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Abstract. The pinning of 'a domain wall by a row of weakened bonds is studied in the 
solid-on-solid limit of the two-dimensional king model. If the weakened bonds lie near the 
edge of the system the domain wall has a roughening transition, but if they lie in the bulk, 
then they localise the domain wall at all temperatures. A continuum version of the model 
shows similar behaviour, in contrast to continuum models of roughening in three dimen- 
sions. 

1. Introduction 

There is a striking contrast between the behaviour of a domain wall in the two- 
dimensional Ising model and that in the three-dimensional model. In the first case, 
capillary fluctuations of the wall are sufficiently large that the mean square displacement 
of the wall from its zero-temperature position diverges with the linear size of the system, 
at any finite temperature (Abraham and Issigoni 1980). In the second case, the mean 
square displacement of a wall is more weakly divergent at high temperatures, being 
proportional to the logarithm of the size of the system, whilst at temperatures below a 
roughening transition temperature the presence of the lattice is sufficient to localise a 
wall near its ground-state position (Weeks and Gilmer 1979 and references therein). 

Abraham (1980) has shown recently by an exact solution that there is a modification 
of the planar Ising model, with a row of weakened exchange bonds next to the edge of 
the system, in which a domain wall also undergoes a transition between localised and 
rough phases. 

In this paper the solid-on-solid limit of the modified system is used to investigate the 
transition in more detail. It is shown that, in distinction to the usual roughening 
transition of an interface in a three-dimensional model, there is a continuum version of 
the system which shows a similar transition at a finite temperature. We conclude that 
this transition is essentially an unbinding of the wall from the weakened bonds, and that 
the lattice does not play a vital role. The model is also used to study competition for a 
domain wall between rows of weakened bonds at opposite edges of the system, and a 
first-order transition is found in which the wall jumps from one edge to the other as the 
relative strengths of the bonds next to the two edges is varied. 
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2. The model 

We begin by describing the model studied by Abraham. Consider spins a(m,  n ) ,  which 
occupy the sites (m, n )  of a square lattice, with 1 S n Z= N + 1 and 1 ZG m S M, and take 
the values a(m,  n )  = *l. The energy of a configuration is 

E = - 1 (41 1 u(m,  n)c+(m + I ,  n ) + ~ ,  1 a(m,  n ~ m ,  n + I )  
M N N-1 

m = l  n = l  n=Z 

+ (J.L - A M m ,  2) - (Jl-  A d d m ,  N ) )  . (1) 

Thus the periodic boundary condition: a(M + 1, n )  = a(1, n )  has been imposed in the m 
direction whilst the spins at the edges n = 1 and n = W + 1 have been fixed respectively 
up and down to guarantee a domain wall. 

The limit: J I+m gives the solid-on-solid model for which the energy of a 
configuration relative to that of the ground state, Eo, can also be written 

M 

E - E o = ~  m = l  C (JliIh(m)-h(m + 1 ) / - A l S h ( m j , l - A Z S h ( m ) , N )  (2) 

Here, m labels sites on a line and the variable h ( m )  takes the values 1 , 2 , .  . . , N ;  
periodic boundary conditions still apply h (M + 1) = h (1); and &,(,,,),a is the Kronecker 
delta. The solid-on-solid limit prevents both excitations of the bulk and also configura- 
tions in which the domain wall overhangs itself, so that the dimensionality of the system 
is effectively reduced from two to one. The special case A1 = Az = 0 is known as the 
Onsager-Temperley string (Temperley 1952): for this, the thermal average ( h ( m ) )  
diverges as M, N + 00 at any finite temperature. The equivalent two-dimensional 
model of the interface in three dimensions has been studied extensively (Weeks and 
Gilmer 1979) and is believed to embody the essentials of the roughening transition. 

It is also interesting to study two modifications of the system described by (2). In the 
first, the weakened bonds lie in the bulk rather than next to an edge; that is, Az = 0 and 
h ( m )  takes on the values 0, * l ,  *2, . . . , kN. In the second, the lattice in the direction 
perpendicular to the wall is removed so that h (m) is a continuous variable. 

3. Solution of the model 

The thermodynamic properties of the model described by (2) can be calculated using 
the transfer matrix. Define an N x N matrix 

(3) (T(N))ij = eXP{-P[241/i -il -Ai(&,i  + aj , l )  -AZ(&,N f a j , N ) ] }  

where p = l /kT,  k being the Boltzmann constant and T absolute temperature. Then 
the partition function is 

and if A j N )  is the largest eigenvalue of T(N) ,  the free energy of the domain wall per unit 
length in the thermodynamic limit (which is discussed in the appendix) is 
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The magnetisation as a function of position in the corresponding Ising model can also be 
calculated. Let p(h)  be the thermal probability that h(m) < h. Then 

h-1  

where 4;'' is the normalised eigenvector of T ( N )  corresponding to the largest eigen- 
value, A l .  This is related to the magnetisation by 

( r ( m ,  n ) )  = 1 -2p(n). (7) 
The basis of the calculation is therefore the diagonalisation of the transfer matrix, 

which is outlined in the appendix; the results are described in this section. The 
eigenvectors of T ( N )  are of the form 

4r = a+ e 2 S r c N - 1  (8) ire +a- e-"' 

with an associated eigenvalue 

1 -x2  
x ~ - ~ x c o s ~ + ~  

A =  x = exp(-2/3Jll). 

There are N values of 8, {ei}, in the range 0 s Re 8 s T,  Im 6 5 0 given by the roots of 
equation (A2). At high temperatures all Bi are real and the smallest is T/N +O(N-') 
for large N, so that 

A ( 1 ) - -  l + x  
- + O W ' )  

l - x  

and the only length scale for ( r ( m ,  n ) )  is the size of the system. At sufficiently low 
temperatures either one or two of the {ei} are imaginary so that 

or e - ( N - i ) ~  where 
Now K gives a length scale to (cr(m)) which remains finite for an infinite system. The 

critical temperature, TR, below which the eigenvector with the largest eigenvalue is 
localised, is given by 

= iK, 4:?) E e-iK 

eXp(-2ql/kT~) +exp(-2A/kTR) = 1 A = max(Al, Az) (11) 

which is also the corresponding limit of equation (8) in Abraham (1980). 

transfer matrix is of rank 2 N  + 1 
For the modification of the model in which the weakened bonds lie in the bulk the 

(T(2N+1)) i i  = exp{-/3[2Jllli - j l  -A(Si,o+Sj,o)]} - N S i ,  jSN. (12) 

The associated eigenvectors have the form 

4r = a+ eir' +a- e-ire l < r s N  

4-r = *4r 
and the eigenvalues, A (e), are as before. However, in this case there are 2 N  real values 
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of e and one imaginary one at all temperatures, so that the domain wall is always 
localised near the weakened bonds. 

Lastly, we return to the case of weakened bonds lying at the edge of the system, but 
now allow h(m) to vary continuously. For the configurational energy 

M 

E -Eo=2 1 {Jlilh(m)- h(m + 1)1-AO[h(m)]) 
m = l  

where 

the transfer matrix is replaced by an integral operator, with eigenfunctions 4i and 
eigenvalues A IL’ according to 

where 

T(x, Y 1 = exp{-P[2Jillx - Y I - N e b )  + O ( Y  ))I). 

A 1  sin(klx + d J l >  x > o  

At high temperatures the eigenfunctions are all of the form 

4 ( x ) = [ A  z sin(k2x + 4 2 )  x < o  

with associated eigenvalues 

~PJII 
4P2Ji + kf  

A =  

but below a critical temperature given by (in the limit L += a)) 

t a n [ 2 ~ ~ ~ 1 l ( e ~ ’ ~ *  - I ) ~ ” ] =  (eZPR*- 11- l ’~ .  

There is one eigenfunction of the form 

x > o  
AZ sin(kox + 4 )  x < o  

and an eigenvalue 

From this we conclude that the transitions in the discrete and continuous versions of this 
solid-on-solid model are qualitatively the same. 

4. Discussion 

The similarity should be set against the differing behaviour of the discrete and 
continuous two-dimensional solid-on-solid models, which are described by equation (2) 
with AI = A 2 = 0 ,  m labelling sites on a two-dimensional lattice, and h ( m ) =  
0, 2 1 ,  *2 , . . and --CO s h(m) <CO, respectively. In the discrete case it has been proven 
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(Abraham and Heilmann 1976) that, at sufficiently low, finite temperatures, ( h 2 ( m ) )  is 
finite, whilst for the continuum version ( h 2 ( m ) )  is divergent at all finite temperatures 
(Chui and Weeks 1976). In this sense, the lattice is relevant to the usual roughening 
transition but not to the transition discussed here. 

The two transitions also differ in the form of the singularity in the free energy at the 
critical temperature. The transition in the interface of a simple cubic Ising model is 
believed to belong to the same universality class as the Kosterlitz-Thouless transition 
(Chui and Weeks 1976) and so the free energy is thought to have an essential singularity 
at the roughening temperature. The free energy of the transition in the two-dimen- 
sional model is (from equation ( 5 ) )  of the mean-field type, with a simple discontinuity in 
the specific heat. It should be noted, however, that roughening transitions of finite 
order are known for interfaces in three-dimensional systems (Knops 1979). 

The transition in the model described by equation (2) is a combined result of an 
attraction for the domain wall by the weakened bonds and the restriction set by the edge 
of the system on the configurations which the wall can take up. It may seem surprising 
initially that the transition should disappear if the weakened bonds lie in the bulk rather 
than near an edge of the system, and it is interesting to relate this one-dimensional 
problem in statistical mechanics to the corresponding zero-dimensional quantum field 
theory (Kogut 1979). First we take the continuum limit of (2) in both directions, so that 
h(m)  becomes a continuous valued function of a continuous argument, m. A 
configuration h (m) has an energy 

The probability that h(mo) = ho, given h(0)  = 0, is proportional to ] 9 ( h )  e-pE'h), where 
the functional integral is over all h ( m )  which satisfy the boundary conditions at 0 and 
mo. This is also, within the Feynman formulation of quantum mechanics, the prob- 
ability that a particle of mass 2J moving in the one-dimensional potential, -A@@),  will 
start from the origin and have position ho at time mo. Planck's constant in the quantum 
mechanical theory takes the place of temperature in the statistical mechanical theory. 
The two cases of the domain wall in the planar Ising model with bond weakening either 
at the edge or in the bulk then correspond to a quantum mechanical particle moving in 
the one-dimensional potentials sketched in figures l ( a )  and ( b )  respectively. As is well 
known (Landau and Lifshitz 1958) figure l ( b )  always has at least one bound state whilst 
l ( a )  has one only for sufficiently large values of JA/h2. The transition might therefore 

I 

Figure 1. The potential energy for a quantum mechanical particle which corresponds to the 
domain wall in a model with weakened bonds lying: ( a )  at the edge and (6) in the bulk. 
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be described as an unbinding of the domain wall from the attraction of the weakened 
bonds. 

The results of this calculation may be used to test the solid-on-solid approximation 
by comparing them with those from the solution of the equivalent isotropic Ising model. 
The roughening temperatures of the discrete and continuous solid-on-solid models and 
the isotropic Ising model are compared in figure 2. As expected, the discrete solid-on- 
solid approximation is asymptotically exact as T + 0, when the bulk magnetisation of 
the Ising model saturates. The continuous and discrete solid-on-solid models have the 
same asymptotic dependence of TR on A l J ,  as A / J +  CO, when the energy cost of an 
excitation is just that of unbinding the wall, and not of bending it. 

Finally, we discuss competition for a domain wall between weakened bonds at 
opposite edges of the system. Since the free energy, F, of the model described by 
equation (2) depends on 41, kT and only the larger of AI and A2, if Az is varied whilst the 

I 
0 1 

A I Jii 

Figure 2. The dependence of the roughening temperature on the strength of the weakened 
bonds in: A, the isotropic Ising model; B, the discrete solid-on-solid model and C, the 
continuous solid-on-solid model. 

I Wall unbound 

A? /Jii AI /Jii 

Figure 3. A representative plane of the phase diagram for the domain wall in a model with 
lines of weakened bonds next to both edges. 
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other parameters are held constant there is a discontinuity in aF/aAz at the point 
AI = Az. The full phase diagram for the system is three-dimensional; a representative 
plane is shown in figure 3. 
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Appendix. The eigenvectors and eigenvalues of the transfer matrices and integral 

If one assumes the form given in equation (8) for the eigenvectors, (6, of T ( N ) ,  then 
dl, C$N, a+, a- and 8 remain to be determined. By direct substitution, T"'(6 = A(6, 
where the eigenvalue A is as in (8), provided that 

ei28 

0 Y1 

= O  

X '  x ( x  -eie)' 
ei2e 

x(x -eia) 
~ 

eie A 
Y1-- 

yl' x ( x  -e-") 

e-i(N-l)a Y 2  

x(x - e-io 1 ' x (x -ei8)' X 

ei(N-l)e 

(AI)  

where x = ep2'41 and y i  = e'',. 
The allowed values of 8, and hence of A ,  are found from the zeros of the determinant 

of this 4 X 4 matrix. The condition for this determinant to be zero can be written as: 

(A21 tan(N - l)8 = F ( 8 )  

where 

RiI2 + IiRz 
R 1R 2 - 1112 

F ( 8 )  = 

Ri = Re{fi(@)l 

f i ( e ) =  ( ~ - e ' ~ ) y ~ + ( e ' ~ - x - ~ ) ( y ~ - ~ / y ~ ) .  

Ii = M f i ( 8 ) l  

It is helpful to note that since T ( N )  is Hermitian, A is real and so 8 is either purely real 
or purely imaginary. Also, all values of A are encompassed by the range for 8: 
0 G Re 8 s T, Im 8 3 0. Hence the roots of (A2) can be found graphically as the points 
of intersection of the curves y = tan ( N  - l )8  and y = F ( 8 ) ,  plotted for real 8 over the 
range 0 s 8 s T and for imaginary 8 over the range 0 G 8 < im. The forms of these 
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curves are sketched for the three possible cases of 0, 1 or 2 imaginary roots for 8 in 
figure 4. It is clear that the smallest real root for 8 lies between 8 = 0 and 8 = T / ( N  - 1) 
(8 = 0 is not, in general, a solution). In the limit N + 00 the roots for imaginary 8 are the 
solutions to F ( 8 )  = i. This can be written as 

As T + Ti, K + 0 which gives equation (10) for TR. 

I 
I 

I = .----, _ .  -.I.-'- \ .  7-' 
I 

I 
Figure 4. Graphs of tan(N- 1)O and F ( 8 )  for (a)  8 real and ( b )  O imaginary. The cases of 0, 
1 and 2 imaginary values for 8, are represented by the curves: -.-.-, --- and 8 9 . 
respectively. 

The transfer matrix for the model in which the weakened bonds lie in the bulk 
(equation (12)) is diagonalised in a similar way. The largest eigenvalue will be 
associated with an eigenvector which has even symmetry, 4r = c$-~, and substitution of 
the form given in equation (13) leads to three equations for a+, a- and &,. 
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( y 2 - A )  sin 8 
tan NO = = F'(8).  

( Y ~ - A ) ( X - C O S  e ) - 2 ~  

As before, the largest eigenvalue, A (e), and an associated localised eigenvector, will 
result from a purely imaginary solution for 8. In the limit N + 03 this is the solution to 
F' (8 )  = i which can be written as 

e = iK. 
1 + x 2  1 -- - cosh K +r sinh K 

2x Y -1 

If A >  0 (i.e. if there are weakened bonds), then there is a finite real value of K which 
satisfies equation (A6) at all temperatures, so that the domain wall is always pinned in 
this model. 

We now derive the eigenvalues of the transfer integral (equation (15)) which 
describes the model in which h(m) is a continuous variable. By differentiation of (15), 
the eigenfunction, 4 ( n ) ,  obeys the differential equation 

*--I d24  4P.WP.O - 1)4 (n) L s n > O  
(A71 

hence the forms (16) and (18) for 4 ( n ) .  Substitution of these into the integral equation 
leads to boundary conditions for 4(n) :  

dn2 - ~ P J ~ ~ ( A P J I I - ~ ~ ' * ) ( ~ ( ~ )  - l s n < O  

4 ( n )  and d4/dn continuous a t n = O  

d4ldn  = 2PJll4 at n =-1 and d4/dn = -2P.44 at n = L. 
(A81 

In the limit, L + 00, the smallest allowed value of kl tends to zero (with klL + T ) ,  so that 
the largest eigenvalue above the transition temperature is A = l/PJII. Below the critical 
point there is a localised eigenfunction with K and ko determined by 

K2=4P2Ji -e-2PA(4P2Ji +kg) 

As T + T i ,  K + Oc, which yields equation (17) for TR. 
The thermodynamic limit given in equation ( 5 )  requires some justification. The 

partition function, ZM,", describes the solid-on-solid limit of an M X N site king model, 
so that in the thermodynamic limit M, N + 0;) with M / N  fixed. Order the eigenvalues of 
T"' by magnitude, IA \"'I > IA i"' 1 > * > [A  '"'I, and set M = N. Then 

ln[h !"'I < N-' In Z , ,  < N-' ln[N(A \"')"I. W O )  
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The right-hand side can be written 

lim 
N-CC 

ln[A \“’I + N - l  In N - ln[A ‘,“’I 
which proves equation ( 5 ) .  

The transfer integral (equation (15)) has an infinite number of eigenvalues, even for 
finite L, so that it is not immediately obvious that the free energy of the continuum 
model is dominated by the largest of these. However, the distribution of eigenvalues, 
apart from the one belonging to the localised eigenfunction, is qualitatively indepen- 
dent of A. In the special case, A = 0, the Hamiltonian (14) is diagonalised by the change 
of variable, k ( m )  = h ( m ) - h ( m  + 1). Then we have 

m 

ln[A\L’]<M-’lnZIM,L<M-lln 

where Z , ,  is the partition function for (14) and AiL’ is the largest eigenvalue of the 
form (16). In the limit M, L + 00 with M E L ,  the right-hand side of (A12) becomes 

This proves that, for A = 0, the free energy in the thermodynamic limit depends only on 
the largest eigenvalue of the transfer integral, and it appears reasonable to suppose the 
same for general A. 

Note added in proof, Since this work was completed the author has learned of the following related 
publications. 
Burkhardt, T W 1981 J. Phys. A :  Math. Gen. 14 L63-8 
Chiu S T and Weeks J D 1981 Phys. Rev. B 23 2438-41 
van Leeuwen J M J and Hilhorst H J 1981 Physica A to appear 
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